
Industrial Challenge: Robots Should Never Explode!

Andrew Begel
Microsoft Research
Redmond, WA, USA

Email: andrew.begel@microsoft.com

Jochen Quante
Robert Bosch GmbH
Corporate Research
Stuttgart, Germany

Email: jochen.quante@de.bosch.com

Abstract—The International Conference on Program Com-
prehension is hosting an industrial challenge. The topic of this
year’s contest is “Robots Should Never Explode!” A robot leg
controller is running a C program written by your company
many years ago. The program is the implementation of an
embedded control system which uses a data-flow algorithm to
direct the robot leg to move from one desired angle to the next.
The program is faulty and three customers have reported bugs,
the most serious of which causes the robot leg to explode!

We invite researchers and practitioners to learn all they can
about this software, fix the bugs, and save your company from
expensive litigation. You must show off what you know, along
with any software tools you used or built to discover or extract
that knowledge from the challenge materials. We motivate the
challenge with a scenario which offers you a taste of the real-
world social situations industrial practitioners find themselves
in every day.

Keywords-

I. OVERVIEW

This year, the International Conference on Program Com-
prehension’s Industrial Challenge has the theme “Robots
Should Never Explode!” Here is the scenario: You are
a developer at a leading embedded software design firm
(RobotControllers.com).1 You have been tasked by your
manager to fix a high-priority bug in a piece of embedded
systems code your company wrote to control a robot leg.
This code was licensed to hundreds of leading robot man-
ufacturers, including myAwesomeRobot.com,2 the maker of
the best selling robot of all time, Mr. Awesome Robot III.
myAwesomeRobot.com and two other robot manufacturers
which use your company’s controller have been getting
complaints from their customers that in certain situations,
their robots’ legs malfunction and self-destruct in a cloud
of smoke (and possibly harmful particles).3 Obviously none
of these companies like the publicity that these explosions
have been causing, nor would they like the government
to come in and examine their manufacturing processes
more closely. They have each filed an incident report with
RobotControllers.com, and since each is a long-time, highly-
valued customer, request that a fix for their bugs be delivered
by the ICPC 2011 challenge deadline, May 31, 2011.

1Not a real company.
2Not a real company.
3Lawsuit pending.

II. THE CHALLENGE

Your challenge, should you choose to accept it, is to 1)
find the bug, 2) fix it, and 3) explain the fix to all stakehold-
ers: your manager, the RobotControllers.com quality and
assurance support person, the myAwesomeRobot.com robot
product leader, and the myAwesomeRobot.com CEO, and
convince them that the bug can never happen again.

If you believe that you can accomplish these tasks, the
engineering leadership team at RobotControllers.com would
like you to show them what tools or techniques (e. g.,
software visualization or testing tools) could help developers
like you to understand the code and fix the bugs more
easily. As a fourth requirement of the challenge, you must
demonstrate how you used a new or pre-existing software
analysis or testing tool to help diagnose and repair the bug.

III. THE SOFTWARE

The robot leg controller chips sold by your company
contain embedded control systems code. What you know
about embedded control systems design is that strategies for
controlling a piece of hardware are typically formulated and
simulated in a graphical modeling environment. They are
then translated to a specification, and implemented in a low-
level systems language (e. g., C or a restricted subset) that
is compiled to run on a controller chip. In the past, you
have been puzzled by the low-level systems code because
the (usually) hand-written, imperative implementation tends
to obscure the data-flow nature of the original controller
strategy.

Early in your investigation of the buggy code, you dis-
covered that the controller was designed in 1984 by a
now deceased control systems engineer4 on an IBM PCjr
computer. He wrote a specification for the controller’s data-
flow logic5 and a second engineer (happily retired in Boca
Raton, Florida) implemented it in C. Fortunately, the code
has been “modernized” over the years to compile and run
on the latest embedded controllers and microcomputers.

4The engineer died tragically in a department store mishap involving
several animatronic mannequins.

5The specification was sadly lost in 1996 when both the hard drive and
all backup tapes containing it suspiciously disappeared. All paper copies of
the specification were “found” by the night janitor, shredded, the morning
after the disappearance.



Even without the controller’s specification, your tacit
knowledge gained from several years of employment at
RobotControllers.com enables you to know that most of
the controllers your company builds use a blackboard archi-
tecture. Inside each module, information about the various
system components is read and written using global variables
visible to all components. Access rights to these variables
are specified and checked outside of the codebase. To en-
sure that customers can customize the controller’s behavior
to their robots’ needs, a special set of customer-supplied
configuration variables may be compiled into the binary.
These variables’ names all end in PARAM. There may
also be characteristic curve variables (whose names end in
CURVE) that can be adjusted to specific configurations.
The controller’s purpose is to cause a motor to move

a robotic leg to a particular angle. To make movements
smooth, ensure a long life of the motor, and fulfill a number
of other non-functional requirements, the motor has to be
controlled in specific ways. Unfortunately, the details of that
are, shall we say, “buried” in the code. As this is a controlled
dynamic system, elements from control theory, such as low
pass filters (e. g. PT1 Filter() in impls.c), are used to ensure
that the leg reaches and stays in its (dynamically adjustable)
desired state. The elements are signaled by the current state
of the leg, as well as historical information about the state
of the motor and the leg.

Your company’s controllers have real-time guarantees, so
their execution is tied to time slices. Functions in the code
are called every few milliseconds, providing them enough
time to read from the global variables, compute instructions
for the hardware, and write to the global variables in order
to pass information to the next time slice. Your controller
testing framework simulates this real-time execution with a
loop in main().

IV. CONTEST REQUIREMENTS

The customers’ bug reports each include the configuration
file they use for their robots, and a description of the robot
leg controller commands they determined lead to incorrect
behavior (the worst of which blows up the robot). Your test
driver can reproduce these situations on a robot leg simulator
your company built to help (safely) diagnose bugs. Each
execution of the simulation produces a table of values that
report the time slice, engine voltage, leg angle, a boolean
that indicates if the leg angle is invalid (meaning the robot
leg sensor has not yet been calibrated), and a boolean that
tells you if the robot controller is currently active.

To fix the bugs, you may modify any of the code in
the controller and the customer’s configuration values, but
you may not change the commands issued to the robot
leg. These have been written explicitly by the customers to
enable their robots usage scenarios. After you fix each bug,
execute the program, and use a Python script supplied with

the contest package to check your output for compliance
with the customers’ commands and report any errors.

As part of your bug-fixing process, you must build a new
software tool, reuse a tool you built before, or find a software
tool written by someone else, that can help you understand
the code and its behavior. It can be a program understanding
tool, a program visualization tool, or perhaps, an actual robot
leg. . . You may use whatever you like, however, you must
document how you used the tool to comprehend the program
and fix the bugs. Please include full-resolution screenshots6

of the tool in action.
You guess that helpful visualization tools would reveal

how data flows through the imperative low-level code.
Better tools might show how the data flows interact with
data dependencies during program execution. Since a lot
of information is passed from one time slice to the next,
there may be value in filtering the information flow to
enable you to concentrate on semantically-related clusters
of dependent variables. Extracting the potential program
states and demonstrating how they relate to one another
may help identify design flaws. Better test drivers might
systematically, but efficiently, vary the values of the (many)
external configuration variables over numerous test runs to
explore their influence on the robot leg’s behavior. Linguistic
analysis tools may try to extract domain knowledge from the
program to identify how such a (possibly generic) controller
algorithm may have been selectively customized for its robot
leg application.

Once you have fixed the bugs, you must write three emails
that document what you did.

1) RobotControllers.com Quality Assurance: Explain
to this non-engineer how the code caused the cus-
tomers’ problems, and what effect your bug fixes
had on the program’s output. Instruct this person
how to recognize symptoms of the bug that may be
communicated by customers.

2) myAwesomeRobot.com Robot Project Leader: De-
scribe in terms suitable for an engineering manager7

how the bug caused the robot leg to explode. Explain
the fix, and convince him that because of this fix, the
bad behavior could not possibly happen ever again.

3) myAwesomeRobot.com CEO: Since the lawsuits
filed over the robot explosions have the potential to
bankrupt myAwesomeRobot.com, write a letter to the
CEO of myAwesomeRobot.com explaining who you
are, how you came to be assigned to his company’s
bug, what you did (in layman’s terms) to fix the
problem, and how you have changed the engineer-
ing culture at your company to require the use of
your program comprehension software tool to fully

6We want to be able to read the text that is on the screen.
7He spent 10 years programming in C, but for the last 10 years has only

overseen code being written; he has not written any by himself.



understand the behaviors of all future robot leg con-
troller software. Finally, apologize for the error, and
convince him not to drop your company for your
nearest competitor as the sole supplier of robot leg
controllers. In this letter, you can be creative, and
invent whatever backstory and marketplace dynamics
you need to create a coherent narrative.

V. LOGISTICS

The contest package includes the problematic code (ar-
tificially created, but similar in nature to industrial em-
bedded software code), the three reported bugs, developer
documentation, and sample program executions that exhibit
both good, and bad, behavior. An acceptance test written
in Python accompanies the package to validate correct
controller output from the test driver.

A completed challenge submission should include the
diff of your fixed source code, the corrected output logs
for the three bugs, a writeup of your use and/or creation
of a software tool (including screenshots) that helped you
understand the code and solve the bugs, and the three emails
you wrote to explain all of this to the people in charge. If
you only have a partial solution, please submit it anyway –
you might just have an interesting approach to propose.

The deadline for entry is May 31, 2011. Submit your
package by email to the Industrial Challenge authors, An-
drew Begel and Jochen Quante. Winning entries will be
chosen by June 10, 2011. We encourage you to submit early
and often before May 31, in case we identify any significant
deficiencies in your submission that need to be corrected.

All acceptable entries will be invited to present a poster
of their solution and tool at the ICPC conference, and will
have a chance to personally demonstrate their solution and
tool to all attendees at the Industrial Challenge session.

Good luck!


